抽筋吃什么药见效快| 宫颈多发纳囊什么意思| 左眼皮跳是什么原因| 胡萝卜含有什么维生素| 甘油三酯高是什么| 吃三七有什么功效| 肌醇是什么东西| 龙生九子下一句是什么| 爬山带什么食物比较好| 反射是什么意思| 回光返照什么意思| 小腿肚抽筋是什么原因| 三点水开念什么意思| 玫瑰花有什么功效| 书五行属性是什么| 雅五行属性是什么| 脚起皮干裂是什么原因| 流年是什么意思| 鸡黍是什么意思| h是什么元素| 桂枝是什么| 梦到被蛇咬是什么意思| 茗茶是什么茶| 一什么泪珠| 为什么会脚臭| 喝酒脸红是什么原因造成的| 贞洁是什么意思| 过敏是什么样的图片| 什么的小朋友| macd是什么意思| 中药用什么锅熬效果最佳| 锦州有什么大学| 初潮是什么| 破釜沉舟是什么意思| 蚕屎有什么作用和功效| 补脑吃什么食物| bp在医学上是什么意思| us是什么意思| 9月1号什么星座| 电解质饮料有什么作用| 清肺热用什么泡水喝比较好| 富豪是什么意思| 燥热是什么意思| 湿疣是什么病| 胸有成竹是什么生肖| 请问紫苏叶有什么功效| 肾阴虚吃什么食物补| 经常放响屁是什么原因| 荡秋千有什么好处| 腋下检查挂什么科| 丙氨酸氨基转移酶是什么意思| 1994属什么| 天象是什么意思| 亚硝酸盐阴性是什么意思| 什么地吃| 血管痉挛是什么症状| 左行气右行血什么意思| 为什么女人比男人长寿| 血糖低会出现什么症状| 长高吃什么钙片| 雌堕什么意思| 检查血压挂什么科| 尿路感染吃什么药效果好| 五指毛桃是什么| 治疗肝脏硬化要吃什么药好| 38是什么生肖| 甲亢是什么| 信任是什么意思| 怀孕第一个月最怕什么| 自主能力是什么意思| 头疼做什么检查| 纵隔子宫是什么意思| 宫颈活检lsil是什么病| 西梅什么时候上市| 牙疼吃什么止疼药见效快| zorro是什么牌子的打火机| 卵巢多囊样改变是什么意思| 肠息肉吃什么药| 婴幼儿屁股红擦什么| 宋江属什么生肖| 神经电生理检查是什么| 养囊是什么意思| 股骨头在什么位置| 小孩咳嗽吃什么药| 大器晚成什么意思| 浑水摸鱼什么意思| 小便痒痒是什么原因女| 什么叫养生| 梦见捡到钱是什么意思| 手腕凸起的骨头叫什么| 什么运动长高最快| 痰核流注什么意思| 慢性萎缩性胃炎吃什么药可以根治| 球拍状胎盘对胎儿有什么影响| 九月十三号是什么星座| 嗓子发炎肿痛吃什么药| 毒龙钻是什么意思| 8月7日什么星座| 脸上不出汗是什么原因| my什么牌子| 风热感冒吃什么药效果好| 勾绞煞是什么意思| 罹是什么意思| 锋字五行属什么| 属牛的婚配什么属相最好| 银梳子梳头有什么好处和坏处| 蒲公英和什么相克致死| 开放式耳机是什么意思| 宜祭祀是什么意思| 下水道井盖为什么是圆的| 球镜是什么意思| 什么叫根管治疗| 岁月匆匆是什么意思| 艺考音乐考什么| 身上长红色痣是什么原因| 人流后什么叫重体力活| 脚上有水泡是什么原因| 烤乳猪用的是什么猪| 令坦是对方什么人的尊称| 什么叫宫腔粘连| 尿气味很重是什么原因| 吃姜有什么好处| 幼犬可以吃什么| edp是什么意思| 病毒性感冒咳嗽吃什么药效果好| 抑郁吃什么药| 唇炎看什么科最好| 乙肝抗体阳性是什么意思| 生气吃什么药可以顺气| 日皮是什么意思| 促进钙吸收吃什么| 小孩晚上睡觉流口水是什么原因| 大排畸是什么检查| 蝗虫用什么呼吸| 化妆的步骤是什么顺序| 壁虎代表什么生肖| 糖尿病吃什么水果好| 子宫内膜单纯性增生是什么意思| 胆固醇高不能吃什么水果| 人参和什么泡酒壮阳| 小弟一阵阵的疼什么原因| 脑梗病人吃什么营养恢复最好| 相知相惜是什么意思| 长辈生日送什么礼物好| 人为什么要穿衣服| 浮夸是什么意思| 眉头长痘痘是因为什么原因引起的| 曹操是什么生肖| 什么叫换手率| 维生素b12又叫什么| 12305是什么电话| chilli是什么意思| 一月出生是什么星座| 异地办理临时身份证需要什么材料| 为什么空调| 拖油瓶是什么意思| 月经期可以吃什么水果| 积液是什么东西| power是什么牌子| 蜱虫咬人后有什么症状| 三个力念什么| 四川有什么山| 淋巴结肿大吃什么食物好| 牙根吸收是什么意思| 抗核抗体是检查什么病| mr什么意思| bmg是什么意思| 母乳是什么味| 弓山文念什么| 腰痛去医院挂什么科| 卦不走空是什么意思| 腰椎生理曲度存在是什么意思| 唐氏综合症是什么意思| 金国人是现在的什么人| 四季春茶属于什么茶| 指甲凹陷是什么原因引起的| 孙俪最新电视剧叫什么| 一对什么| 天气一热身上就痒是什么原因| soeasy是什么意思| orange是什么颜色| 湿气重吃什么药好| 济南有什么景点| 什么时间英文| 肠炎吃什么药好| 胆固醇高有什么症状| 熟地是什么| 天蝎配什么星座| 菠萝是什么意思| 女性尿频繁是什么原因| 后厨是做什么的| 玉鸟吃什么饲料好| 为什么睡觉磨牙| 燕麦片热量高为什么还能减肥| 射精出血是什么原因引起的| 小米什么时候成熟| 为什么梦不到死去的亲人| 为什么会阑尾炎| 皮肤为什么会痒| rad是什么意思| 零和游戏是什么意思| 烈女怕缠郎是什么意思| 血常规血红蛋白偏高是什么原因| 产后第一次来月经是什么颜色| 蓝桉什么意思| 则字五行属什么| 7月26日是什么日子| 梦见小麦粒是什么意思| 七月十五有什么禁忌| 芒果和什么不能一起吃| 河豚吃什么食物| 夏天脚出汗是什么原因| 狗狗窝咳吃什么药最好| 事后紧急避孕药什么时候吃有效| 穿小鞋什么意思| 氡气是什么| 剂型是什么意思| 脂肪肝吃什么药好得快| 喉咙长期有痰是什么原因| 520和521的区别是什么| 什么病可以鉴定病残| 百香果什么时候吃最好| 哺乳期吃什么食物好| 吃多了拉肚子是什么原因| 嗜酸性粒细胞偏低是什么意思| 野格是什么酒| 吃什么胎儿眼睛黑又亮| 脚底板痛挂什么科| 什么叫欲擒故纵| 三长两短是什么意思| 鸡拉稀吃什么药| 庭长是什么级别| 劝退是什么意思| 淮山是什么| 床上有横梁有什么害处| 4月5日是什么星座| 水果有什么| 什么像什么似的什么| 1ph是什么意思| maby什么意思| 什么是漏斗胸| 赞赏是什么意思| 方兴未什么| 陈皮不能和什么一起吃| 槊是什么兵器| 热毒是什么| 痛风吃什么药最好| 病毒性咳嗽吃什么药好| 叶黄素是什么东西| 小肠炖什么好吃又营养| 晚上经常做梦是什么原因| 子宫下垂有什么症状| 沉贵宝是什么木| 计数单位是指什么| 移动迷宫到底讲的什么| 倭瓜是什么意思| 糯米粉做什么好吃| 长绒棉和全棉什么区别| 滥竽充数的滥是什么意思| 胃溃疡适合吃什么食物| 尿隐血2十是什么原因| 女性吃辅酶q10有什么好处| 安利什么意思| 母仪天下是什么意思| 百度Jump to content

谷草谷丙低是什么原因

From Wikipedia, the free encyclopedia
(Redirected from Horizontal scaling)

Scalability is the property of a system to handle a growing amount of work. One definition for software systems specifies that this may be done by adding resources to the system.[1]

In an economic context, a scalable business model implies that a company can increase sales given increased resources. For example, a package delivery system is scalable because more packages can be delivered by adding more delivery vehicles. However, if all packages had to first pass through a single warehouse for sorting, the system would not be as scalable, because one warehouse can handle only a limited number of packages.[2]

In computing, scalability is a characteristic of computers, networks, algorithms, networking protocols, programs and applications. An example is a search engine, which must support increasing numbers of users, and the number of topics it indexes.[3] Webscale is a computer architectural approach that brings the capabilities of large-scale cloud computing companies into enterprise data centers.[4]

In distributed systems, there are several definitions according to the authors, some considering the concepts of scalability a sub-part of elasticity, others as being distinct. According to Marc Brooker: "a system is scalable in the range where marginal cost of additional workload is nearly constant." Serverless technologies fit this definition but you need to consider total cost of ownership not just the infra cost. [5]

In mathematics, scalability mostly refers to closure under scalar multiplication.

In industrial engineering and manufacturing, scalability refers to the capacity of a process, system, or organization to handle a growing workload, adapt to increasing demands, and maintain operational efficiency. A scalable system can effectively manage increased production volumes, new product lines, or expanding markets without compromising quality or performance. In this context, scalability is a vital consideration for businesses aiming to meet customer expectations, remain competitive, and achieve sustainable growth. Factors influencing scalability include the flexibility of the production process, the adaptability of the workforce, and the integration of advanced technologies. By implementing scalable solutions, companies can optimize resource utilization, reduce costs, and streamline their operations. Scalability in industrial engineering and manufacturing enables businesses to respond to fluctuating market conditions, capitalize on emerging opportunities, and thrive in an ever-evolving global landscape.[citation needed]

Examples

[edit]

The Incident Command System (ICS) is used by emergency response agencies in the United States. ICS can scale resource coordination from a single-engine roadside brushfire to an interstate wildfire. The first resource on scene establishes command, with authority to order resources and delegate responsibility (managing five to seven officers, who will again delegate to up to seven, and on as the incident grows). As an incident expands, more senior officers assume command.[6]

Dimensions

[edit]

Scalability can be measured over multiple dimensions, such as:[7]

  • Administrative scalability: The ability for an increasing number of organizations or users to access a system.
  • Functional scalability: The ability to enhance the system by adding new functionality without disrupting existing activities.
  • Geographic scalability: The ability to maintain effectiveness during expansion from a local area to a larger region.
  • Load scalability: The ability for a distributed system to expand and contract to accommodate heavier or lighter loads, including, the ease with which a system or component can be modified, added, or removed, to accommodate changing loads.
  • Generation scalability: The ability of a system to scale by adopting new generations of components.
  • Heterogeneous scalability is the ability to adopt components from different vendors.

Domains

[edit]
  • A routing protocol is considered scalable with respect to network size, if the size of the necessary routing table on each node grows as O(log N), where N is the number of nodes in the network. Some early peer-to-peer (P2P) implementations of Gnutella had scaling issues. Each node query flooded its requests to all nodes. The demand on each peer increased in proportion to the total number of peers, quickly overrunning their capacity. Other P2P systems like BitTorrent scale well because the demand on each peer is independent of the number of peers. Nothing is centralized, so the system can expand indefinitely without any resources other than the peers themselves.
  • A scalable online transaction processing system or database management system is one that can be upgraded to process more transactions by adding new processors, devices and storage, and which can be upgraded easily and transparently without shutting it down.
  • The distributed nature of the Domain Name System (DNS) allows it to work efficiently, serving billions of hosts on the worldwide Internet.

Horizontal (scale out) and vertical scaling (scale up)

[edit]
Graphic that visualizes horizontal and vertical scaling.
Horizontal scaling adds new nodes to a computing cluster, while vertical scaling adds resources to existing nodes.

Resources fall into two broad categories: horizontal and vertical.[8]

Horizontal or scale out

[edit]

Scaling horizontally (out/in) means adding or removing nodes, such as adding a new computer to a distributed software application. An example might involve scaling out from one web server to three. High-performance computing applications, such as seismic analysis and biotechnology, scale workloads horizontally to support tasks that once would have required expensive supercomputers. Other workloads, such as large social networks, exceed the capacity of the largest supercomputer and can only be handled by scalable systems. Exploiting this scalability requires software for efficient resource management and maintenance.[7]

Vertical or scale up

[edit]

Scaling vertically (up/down) means adding resources to (or removing resources from) a single node, typically involving the addition of CPUs, memory or storage to a single computer.[7]

Benefits to scale-up include avoiding increased management complexity, more sophisticated programming to allocate tasks among resources and handling issues such as throughput, latency, and synchronization across nodes. Moreover some applications do not scale horizontally.

Network scalability

[edit]

Network function virtualization defines these terms differently: scaling out/in is the ability to scale by adding/removing resource instances (e.g., virtual machine), whereas scaling up/down is the ability to scale by changing allocated resources (e.g., memory/CPU/storage capacity).[9]

Database scalability

[edit]

Scalability for databases requires that the database system be able to perform additional work given greater hardware resources, such as additional servers, processors, memory and storage. Workloads have continued to grow and demands on databases have followed suit.

Algorithmic innovations include row-level locking and table and index partitioning. Architectural innovations include shared-nothing and shared-everything architectures for managing multi-server configurations.

Strong versus eventual consistency (storage)

[edit]

In the context of scale-out data storage, scalability is defined as the maximum storage cluster size which guarantees full data consistency, meaning there is only ever one valid version of stored data in the whole cluster, independently from the number of redundant physical data copies. Clusters which provide "lazy" redundancy by updating copies in an asynchronous fashion are called 'eventually consistent'. This type of scale-out design is suitable when availability and responsiveness are rated higher than consistency, which is true for many web file-hosting services or web caches (if you want the latest version, wait some seconds for it to propagate). For all classical transaction-oriented applications, this design should be avoided.[10]

Many open-source and even commercial scale-out storage clusters, especially those built on top of standard PC hardware and networks, provide eventual consistency only, such as some NoSQL databases like CouchDB and others mentioned above. Write operations invalidate other copies, but often don't wait for their acknowledgements. Read operations typically don't check every redundant copy prior to answering, potentially missing the preceding write operation. The large amount of metadata signal traffic would require specialized hardware and short distances to be handled with acceptable performance (i.e., act like a non-clustered storage device or database).[citation needed]

Whenever strong data consistency is expected, look for these indicators:[citation needed]

  • the use of InfiniBand, Fibrechannel or similar low-latency networks to avoid performance degradation with increasing cluster size and number of redundant copies.
  • short cable lengths and limited physical extent, avoiding signal runtime performance degradation.
  • majority / quorum mechanisms to guarantee data consistency whenever parts of the cluster become inaccessible.

Indicators for eventually consistent designs (not suitable for transactional applications!) are:[citation needed]

  • write performance increases linearly with the number of connected devices in the cluster.
  • while the storage cluster is partitioned, all parts remain responsive. There is a risk of conflicting updates.

Performance tuning versus hardware scalability

[edit]

It is often advised to focus system design on hardware scalability rather than on capacity. It is typically cheaper to add a new node to a system in order to achieve improved performance than to partake in performance tuning to improve the capacity that each node can handle. But this approach can have diminishing returns (as discussed in performance engineering). For example: suppose 70% of a program can be sped up if parallelized and run on multiple CPUs instead of one. If is the fraction of a calculation that is sequential, and is the fraction that can be parallelized, the maximum speedup that can be achieved by using P processors is given according to Amdahl's Law:

Substituting the value for this example, using 4 processors gives

Doubling the computing power to 8 processors gives

Doubling the processing power has only sped up the process by roughly one-fifth. If the whole problem was parallelizable, the speed would also double. Therefore, throwing in more hardware is not necessarily the optimal approach.

Universal Scalability Law

[edit]

In distributed systems, you can use Universal Scalability Law (USL) to model and to optimize scalability of your system. USL is coined by Neil J. Gunther and quantifies scalability based on parameters such as contention and coherency. Contention refers to delay due to waiting or queueing for shared resources. Coherence refers to delay for data to become consistent. For example, having a high contention indicates sequential processing that could be parallelized, while having a high coherency suggests excessive dependencies among processes, prompting you to minimize interactions. Also, with help of USL, you can, in advance, calculate the maximum effective capacity of your system: scaling up your system beyond that point is a waste. [11]

Weak versus strong scaling

[edit]

High performance computing has two common notions of scalability:

  • Strong scaling is defined as how the solution time varies with the number of processors for a fixed total problem size.
  • Weak scaling is defined as how the solution time varies with the number of processors for a fixed problem size per processor.[12]

See also

[edit]

References

[edit]
  1. ^ Bondi, André B. (2000). Characteristics of scalability and their impact on performance. Proceedings of the second international workshop on Software and performance – WOSP '00. p. 195. doi:10.1145/350391.350432. ISBN 158113195X.
  2. ^ Hill, Mark D. (1990). "What is scalability?" (PDF). ACM SIGARCH Computer Architecture News. 18 (4): 18. doi:10.1145/121973.121975. S2CID 1232925. and
    Duboc, Leticia; Rosenblum, David S.; Wicks, Tony (2006). A framework for modelling and analysis of software systems scalability (PDF). Proceedings of the 28th international conference on Software engineering – ICSE '06. p. 949. doi:10.1145/1134285.1134460. ISBN 1595933751.
  3. ^ Laudon, Kenneth Craig; Traver, Carol Guercio (2008). E-commerce: Business, Technology, Society. Pearson Prentice Hall/Pearson Education. ISBN 9780136006459.
  4. ^ "Why web-scale is the future". Network World. 2025-08-06. Retrieved 2025-08-06.
  5. ^ Building Serverless Applications on Knative. O'Reilly Media. ISBN 9781098142049.
  6. ^ Bigley, Gregory A.; Roberts, Karlene H. (2025-08-06). "The Incident Command System: High-Reliability Organizing for Complex and Volatile Task Environments". Academy of Management Journal. 44 (6): 1281–1299. doi:10.5465/3069401 (inactive 12 July 2025). ISSN 0001-4273.{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  7. ^ a b c Hesham El-Rewini and Mostafa Abd-El-Barr (April 2005). Advanced Computer Architecture and Parallel Processing. John Wiley & Sons. p. 66. ISBN 978-0-471-47839-3.
  8. ^ Michael, Maged; Moreira, Jose E.; Shiloach, Doron; Wisniewski, Robert W. (March 26, 2007). Scale-up x Scale-out: A Case Study using Nutch/Lucene. 2007 IEEE International Parallel and Distributed Processing Symposium. p. 1. doi:10.1109/IPDPS.2007.370631. ISBN 978-1-4244-0909-9.
  9. ^ "Network Functions Virtualisation (NFV); Terminology for Main Concepts in NFV". Archived from the original (PDF) on 2025-08-06. Retrieved 2025-08-06.
  10. ^ Sadek Drobi (January 11, 2008). "Eventual consistency by Werner Vogels". InfoQ. Retrieved April 8, 2017.
  11. ^ Gunther, Neil (2007). Guerrilla Capacity Planning: A Tactical Approach to Planning for Highly Scalable Applications and Services. ISBN 978-3540261384.
  12. ^ "The Weak Scaling of DL_POLY 3". STFC Computational Science and Engineering Department. Archived from the original on March 7, 2014. Retrieved March 8, 2014.
[edit]
吃什么愈合伤口恢复最快 乙肝表面抗体高是什么意思 健康证照片用什么底色 无花果不能和什么一起吃 值机是什么
为什么总是头疼 2006年是什么年 荷尔蒙是什么东西 姨妈期可以做什么运动 叫姑姑是什么关系
从容不迫是什么意思 一呼吸胸口疼是什么原因 鱼喜欢吃什么 月寸读什么 内热外寒感冒用什么药
生气过度会气出什么病 气虚吃什么 上海什么时候解放的 德国为什么发动二战 玄关是什么
plein是什么牌子xinjiangjialails.com 血糖高是什么引起的hcv9jop0ns0r.cn 淋巴在什么部位hcv8jop8ns6r.cn 什么叫化疗为什么要化疗0735v.com 女人梦到小蛇什么预兆jasonfriends.com
遗忘的遗是什么意思adwl56.com 7月20号是什么星座hcv9jop0ns4r.cn 什么东西放进去是硬的拿出来是软的hcv8jop8ns9r.cn 手脱皮是什么原因引起的hcv9jop6ns6r.cn 败血症吃什么药hcv8jop1ns0r.cn
握手言和是什么意思hcv8jop3ns9r.cn 九什么一毛hcv9jop5ns3r.cn 正常的白带是什么样的hcv8jop8ns6r.cn 黄色裤子搭配什么颜色上衣hcv7jop6ns3r.cn 黑鱼不能和什么一起吃aiwuzhiyu.com
北京有什么好吃的hcv7jop5ns3r.cn 茶苯海明片是什么药hcv8jop4ns6r.cn 小便发红是什么症状男hcv9jop2ns7r.cn 射手座什么性格hcv7jop5ns0r.cn 什么睡姿有助于丰胸hcv7jop6ns1r.cn
百度